浪潮存储服务清华大学,推动中国脑科学研究
2019/12/12 11:01:15
背景:人类始终对“大脑”这个重要器官怀着浓浓的好奇:大脑是怎么指挥我们日常行为的?八百亿神经元是如何协同传递信息的?经过数年的攻关,清华大学推出了综合指标国际领先的多维多尺度高分辨光学显微成像系统(简称RUSH脑成像),采用浪潮分布式存储提供PB级容量和20.16GB/s的带宽,承载了小鼠全脑皮层神经元的实时成像研究。
浪潮存储服务清华大学,推进脑科学研究
近期,清华大学多维多尺度高分辨率显微成像(简称RUSH脑成像)项目取得重大进展,其第二代RUSH的视场、分辨率、帧率、数据通量等综合技术指标国际领先,可实现对小鼠全脑皮层神经元的分布、动态功能信号传递过程的有效呈现,对推动中国生命和医学科学发展,提升脑科学研究和应用水平具有重大战略意义。
活体全脑成像 难在哪?
开展大脑研究,需要在活体动物的全脑上进行观测和研究。因此清华大学脑科研项目组选择了小鼠大脑率先进行全脑实时成像研究。
但是,这项工作的复杂性颇高,要知道,小鼠大脑的神经元胞体直径大概只有10微米,神经元之间连接的突触才2~4微米,而小鼠大脑有一亿个左右的神经元,神经元之间有千余个数据连接,即使是很简单的神经连接也可能跨越大脑的两个半球,其神经网络的复杂程度远远超越当今的互联网。而考虑到人类大脑规模是小鼠的大脑的800倍(神经元数量),复杂度不可同日而语。
从脑成像角度来看,要对大脑进行观测,不仅需要宽阔的视野和极高的分辨率,还需要极高的呈现速度来观测动态信号传递过程。
清华大学范静涛老师表示,“在RUSH研究之前,现有的显微观测设备,要么可以实现足够高的分辨率,但难以观测到全脑;要么可以观测到全脑神经活动,但无法观测到足够的神经元细节。主要原因是同时受制于光学成像能力和数据采集-传输通量瓶颈。”如今,在清华RUSH项目组的努力下,这一情况已经被改写。
脑成像:每秒100亿像素、每天2.7PB,还不能丢帧
RUSH-II实现了视场大小 1平方厘米、分辨率0.4微米、帧率30帧/秒的指标,意味其能够更好地满足对于大脑的观测需求。
RUSH脑成像项目在拍摄过程中每秒100亿像素数据通量,每天产生1.5PB数据
如果说大视场、高分辨率考验着RUSH脑成像项目的光学特性,那么要满足“极高的呈现速度”这个需求,就需要数字化能力的支撑。RUSH脑成像项目有着28台相机,每台相机1200万像素,在连续拍摄过程中会产生100.8亿像素/秒的数据通量,这就意味着当其连续拍摄任务中,每天将产生2.7PB左右的数据,存储系统显然要具备极高的容量。
“清华脑科研项目对于存储的要求不仅在于容量,更大的挑战是存储要实时在线,不能丢帧”,清华大学范静涛表示。例如,在研究过程中,研究人员会在小鼠血液中加入荧光剂,然后会使用RUSH中的28台相机,以每秒30帧、连续72小时的方式对小鼠进行拍摄,最后将这些图片拼接成三维图像序列。由于小鼠是活体的,其血液无时无刻不在流动,相机需要去追踪每一个细胞的流动曲线,即使出现一帧的丢失,也会让研究人员无法跟踪到全过程,3D成像的拼接也无从谈起,会导致耗时、耗资巨大的拍摄项目功亏一篑。
除此之外,RUSH脑成像项目对于存储系统所带来的挑战还有很多。比如,RUSH脑成像系统的摄像仪器每秒钟会产生840个文件、每个文件24MB,这些海量的小文件非常考验存储系统的处理能力;又如,在某些生命科学成像观测中,长达72小时的观测会产生海量的文件,而且从第一个文件到写满,不能丢帧,这就需要确保长时间的稳定写入;再如,RUSH-II无法采用冷数据备份,所以需要采用创新数据冗余机制,确保数据不丢失。
分布式存储:以智能运维,满足PB级数据不丢帧
下一页
返回列表
返回首页
©2025 存储世界--存储世界门户网站,存储资料和交流中心 电脑版
Powered by iwms